\qquad
\qquad

Work, Mechanical Advantage, and Efficiency

1. A container has a mass of 36 kg . How much does the container weigh?

$$
\begin{aligned}
& m=36 \mathrm{~kg} \\
& g=9.8 \mathrm{~N} / \mathrm{kg} \\
& F_{W}=?
\end{aligned}
$$

$$
\begin{aligned}
& F_{W}=m g \\
& F_{W}=36 \times 9.8 \\
& F_{W}=352.8 \mathrm{~N}
\end{aligned}
$$

\therefore The container
weighs 352.8 N .
2. If you were to lift the container, and place it on the back of a truck, 115 cm high, how much work would you do?
$F_{W}=352.8 \mathrm{~N}$
$W=F d$
$d=115 \mathrm{~cm}$
$W=352.8 \times 1.15$
$d=1.15 \mathrm{~m}$
$W=405.72 \mathrm{~J}$
\therefore It should take 405.72 J of work to put the container in the truck.
3. If it was a windy day, and it took you 450 J of energy to get the container to the back of the truck, how efficient were you?

$W_{i}=450 \mathrm{~J}$	$E f f=\frac{W_{o}}{W_{i}}$	\therefore The process was
$W_{o}=405.72 \mathrm{~J}$		about 90% $E f f=?$
$E f f=\frac{405.72}{450}$	efficient.	
	$E f f=0.9016$	
	$E f f=90.16 \%$	

4. For the lever shown below, what effort force would be needed to raise the load?
$d_{L}=37 \mathrm{~cm}$
$d_{E}=126 \mathrm{~cm}$
$\frac{d_{L}}{d_{E}}=\frac{F_{E}}{F_{L}}$
$F_{L}=283$
$\frac{37}{126}=\frac{F_{E}}{283}$
\therefore It should take
$83.1 N$ to lift the load.

$$
0.294=\frac{F_{E}}{283}
$$

$$
F_{E}=0.294 \times 283
$$

$$
F_{E}=83.1 \mathrm{~N}
$$

5. What is the mechanical advantage of this lever?

$d_{L}=37 \mathrm{~cm}$		\therefore The mechanical
$d_{E}=126 \mathrm{~cm}$	$I M A=\frac{d_{E}}{d_{L}}$	advantage of the
$I M A=?$	$I M A=\frac{126}{37}$	lever should be
	$I M A=3.405$	about 3.4.

6. If the larger gear below is turned at a rate of 60 rotations per minute, at what rate would the smaller gear turn?

Velocity Ratio
\#Driver Teeth $=21$
$\#$ Follower Teeth $=7$
$V R=$?
$V R=\frac{\text { \#Driver Teeth }}{\text { \#Follower Teeth }}$
$V R=\frac{21}{7}$
$V R=3$
\therefore The small gear turns 3 times faster.

Follower Speed
Driver Speed $=60$ RPM
Follower Speed $=$?
$V R=3$

Follower Speed $=$ Driver Speed $\times V R$
Follower Speed $=60 \times 3$
Follower Speed $=180$ RPM
\therefore The smaller gear would turn at $180 R P M$.
7. For each of the following three simple machines:
a. What is the ideal mechanical advantage?
b. How much force, ideally, would be needed to move the object?

Weight of Box
$m=12 \mathrm{~kg}$
$g=9.8 \mathrm{~N} / \mathrm{kg}$
$F_{W}=$?
$F_{W}=m g$
$F_{W}=12 \times 9.8$
$F_{W}=117.6 \mathrm{~N}$
\therefore The container weighs
117.6 N .

Ideal Mechanical
Advantage
$h=1.6 \mathrm{~m}$
$l=3.9 \mathrm{~m}$
$I M A=$?
$I M A=\frac{l}{h}$
$I M A=\frac{3.9}{1.6}$
$I M A=2.4375$
\therefore The ideal mechanical advantage is about 2.4.

Effort Force
$F_{L}=117.6 \mathrm{~N}$
$F_{E}=$?
$I M A=2.4375$
$I M A=\frac{F_{L}}{F_{E}}$
$F_{E}=\frac{F_{L}}{I M A}$
$F_{E}=\frac{117.6}{2.4375}$
$F_{E} \cong 48.246 \mathrm{~N}$
\therefore It should take about
48.2 N to move the box.

\therefore It should take 540 N to
lift the load.
8. The following system combines a variety of simple machines. The box is to travel up a ramp. There is a cable used to raise the box up the ramp, that cable moves through a variety of pulleys. The pulley system is attached to a winch.
a. What is the mechanical advantage of this system?
b. How much force, ideally, should you need to use to move the box?
c. If the box moves to the top of the ramp by turning the crank arm with a force of 15 N , how efficient is the system?

* Note, this is a level 4 question, do what you can, but understand that not all students will be able to get a full solution. However, everyone should attempt it.

IMA - Ramp
$h=1.4 \mathrm{~m}$
$l=3.6 \mathrm{~m}$
$I M A_{R}=$?
$I M A_{R}=\frac{l}{h}$
$I M A_{R}=\frac{3.6}{1.4}$
$I M A_{R} \cong 2.571$

IMA - Pulleys
Support Ropes $=3$
Pulled Ropes $=1$
$I M A_{P}=$?
$I M A_{P}=\frac{\# \text { Support Ropes }}{\# \text { Ropes Pulled }}$
$I M A_{P}=\frac{3}{1}$
$I M A_{P}=3$

IMA - System

Because the three simple machines are used one after the other, they need to be multiplied, as each simple machine applies its mechanical advantage to the next.
$I M A_{S}=I M A_{R} \times I M A_{P}$ $\times I M A_{W}$
$I M A_{S}=2.571 \times 3$
$\times 3.231$
$I M A_{S} \cong 24.923$
\therefore The ideal mechanical advantage of the system is about 24.9.

IMA - Winch (W\&A)
$D_{w}=21 \times 2$
$D_{w}=42 \mathrm{~cm}$
$D_{a}=13 \mathrm{~cm}$
$I M A_{W}=$?
$I M A_{W}=\frac{D_{w}}{D_{a}}$
$I M A_{W}=\frac{42}{13}$
$I M A_{W} \cong 3.231$

Load Force (Straight Lift)
$m=15.3 \mathrm{~kg}$
$g=9.8 \mathrm{~N} / \mathrm{kg}$
$F_{W}=$?
$F_{W}=m g$
$F_{W}=15.3 \times 9.8$
$F_{W}=149.94 \mathrm{~N}$
\therefore To lift the container without the system it would take 149.94 N .

Question 8 Continued

Effort Force
$F_{L}=149.94 \mathrm{~N}$
$F_{E}=$?
$I M A=24.923$
$I M A=\frac{F_{L}}{F_{E}}$
$F_{E}=\frac{F_{L}}{I M A}$
$F_{E}=\frac{149.94}{24.923}$
$F_{E} \cong 6.016 \mathrm{~N}$
\therefore It should take about 6.0 N to lift the load with the system.

Actual Mechancial
Advantage
$F_{L}=149.94 \mathrm{~N}$
$F_{E}=15 \mathrm{~N}$
$A M A_{S}=$?
$A M A_{S}=\frac{F_{L}}{F_{E}}$
$A M A_{S}=\frac{149.94}{15}$
$A M A_{S}=9.996$
System Efficiency
$I M A_{S}=24.923$
$A M A_{S}=9.996$
$E f f_{S}=$?
$E f f_{S}=\frac{A M A}{I M A}$
$E f f_{S}=\frac{9.996}{24.923}$
$E f f_{S} \cong 0.401$
$E f f_{S} \cong 40 \%$
\therefore The system is 40% efficient.

