Work, Mechanical Advantage, and Efficiency

- 1. A container has a mass of 36 kg. How much does the container weigh?
 - $m = 36 kg \qquad F_W = mg \qquad \therefore \text{ The container} \\ g = 9.8 \frac{N}{kg} \qquad F_W = 36 \times 9.8 \qquad \text{weighs } 352.8 N. \\ F_W = ? \qquad F_W = 352.8 N$
- 2. If you were to lift the container, and place it on the back of a truck, 115 cm high, how much work would you do?
 - $F_W = 352.8 N$ W = Fd \therefore It should taked = 115 cm $W = 352.8 \times 1.15$ 405.72 J of work tod = 1.15 mW = 405.72 Jput the container inW = ?the truck.
- 3. If it was a windy day, and it took you 450 J of energy to get the container to the back of the truck, how efficient were you?

$W_i = 450 J$ $W_o = 405.72 J$	$Eff = \frac{W_o}{W_i}$	 ∴ The process was about 90 %
Eff = ?	$Eff = \frac{405.72}{450}$	efficient.
	Eff = 0.9016 Eff = 90.16 %	

4. For the lever shown below, what effort force would be needed to raise the load?

$$d_{L} = 37 \ cm$$

$$d_{E} = 126 \ cm$$

$$F_{L} = 283$$

$$F_{E} = ?$$

$$\frac{d_{L}}{d_{E}} = \frac{F_{E}}{F_{L}}$$

$$\frac{37}{126} = \frac{F_{E}}{283}$$

$$0.294 = \frac{F_{E}}{283}$$

$$F_{E} = 0.294 \times 283$$

$$F_{E} = 83.1 \ N$$

5. What is the mechanical advantage of this lever?

$d_L = 37 \ cm$ $d_E = 126 \ cm$	$IMA = \frac{d_E}{d_I}$	 ∴ The mechanical advantage of the
IMA = ?	126	lever should be
	$IMA = \frac{126}{37}$	about 3.4.
	IMA = 3.405	

6. If the larger gear below is turned at a rate of 60 rotations per minute, at what rate would the smaller gear turn?

Velocity Ratio	Follower Speed	
#Driver Teeth = 21 #Follower Teeth = 7 VR = ?	Driver Speed = 60 RPM Follower Speed = ? VR = 3	
$VR = \frac{\#DriverTeeth}{\#FollowerTeeth}$	Follower Speed = Driver Speed × VR	
$VR = \frac{21}{7}$	Follower Speed = 60×3	
VR = 3	Follower Speed = 180 RPM	

 \therefore The small gear turns 3 times faster.

 \therefore The small gear turns 3 times \therefore The smaller gear would turn at 180 *RPM*.

- 7. For each of the following three simple machines:
 - a. What is the ideal mechanical advantage?
 - b. How much force, ideally, would be needed to move the object?

 \therefore It should take 540 *N* to lift the load.

- 8. The following system combines a variety of simple machines. The box is to travel up a ramp. There is a cable used to raise the box up the ramp, that cable moves through a variety of pulleys. The pulley system is attached to a winch.
 - a. What is the mechanical advantage of this system?
 - b. How much force, ideally, should you need to use to move the box?
 - c. If the box moves to the top of the ramp by turning the crank arm with a force of 15 N, how efficient is the system?
 - * Note, this is a level 4 question, do what you can, but understand that not all students will be able to get a full solution. However, everyone should attempt it.

be multiplied, as each simple machine applies its mechanical advantage to the next.

$$IMA_{S} = IMA_{R} \times IMA_{P}$$
$$\times IMA_{W}$$
$$IMA_{S} = 2.571 \times 3$$
$$\times 3.231$$
$$IMA_{S} \cong 24.923$$

 \therefore The ideal mechanical advantage of the system is about 24.9.

$$F_W = mg$$

 $F_W = 15.3 \times 9.8$
 $F_W = 149.94 N$

∴ To lift the container without the system it would take 149.94 N.

Question 8 Continued

Effort Force $F_L = 149.94 N$ $F_E = ?$ IMA = 24.923 $IMA = \frac{F_L}{F_E}$ $F_E = \frac{F_L}{IMA}$ $F_E = \frac{149.94}{24.923}$ $F_E \approx 6.016 N$

:. It should take about 6.0 *N* to lift the load with the system.

Actual MechancialSystem EfficiencyAdvantage
$$IMA_S = 24.923$$
 $F_L = 149.94 N$ $AMA_S = 9.996$ $F_E = 15 N$ $AMA_S = 9.996$ $AMA_S = ?$ $Eff_S = ?$ $AMA_S = \frac{F_L}{F_E}$ $Eff_S = \frac{AMA}{IMA}$ $AMA_S = \frac{149.94}{15}$ $Eff_S \approx 0.401$ $AMA_S = 9.996$ $Eff_S \approx 40\%$

∴ The system is 40% efficient.